Estimates of solutions and asymptotic symmetry for parabolic equations on bounded domains
نویسنده
چکیده
We consider fully nonlinear parabolic equations on bounded domains under Dirichlet boundary condition. Assuming that the equation and the domain satisfy certain symmetry conditions, we prove that each bounded positive solution of the Dirichlet problem is asymptotically symmetric. Compared with previous results of this type, we do not assume certain crucial hypotheses, such as uniform (with respect to time) positivity of the solution or regularity of the nonlinearity in time. Our method is based on estimates of solutions of linear parabolic problems, in particular on a theorem on asymptotic positivity of such solutions.
منابع مشابه
On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry
We consider fully nonlinear weakly coupled systems of parabolic equations on a bounded reflectionally symmetric domain. Assuming the system is cooperative we prove the asymptotic symmetry of positive bounded solutions. To facilitate an application of the method of moving hyperplanes, we derive Harnack type estimates for linear cooperative parabolic systems.
متن کاملSymmetry properties of positive solutions of parabolic equations: a survey
This survey is concerned with positive solutions of nonlinear parabolic equations. Assuming that the underlying domain and the equation have certain reflectional symmetries, the presented results show how positive solutions reflect the symmetries. Depending on the class of solutions considered, the symmetries for all times or asymptotic symmetries are established. Several classes of problems, i...
متن کاملSymmetry properties of positive solutions of parabolic equations on R : I. Asymptotic symmetry for the Cauchy problem
We consider quasilinear parabolic equations on RN satisfying certain symmetry conditions. We prove that bounded positive solutions decaying to zero at spatial infinity are asymptotically radially symmetric about a center. The asymptotic center of symmetry is not fixed a priori (and depends on the solution) but it is independent of time. We also prove a similar theorem on reflectional symmetry.
متن کاملEquilibria with a nontrivial nodal set and the dynamics of parabolic equations on symmetric domains
We consider the Dirichlet problem for a class of semilinear parabolic equations on a bounded domain which reflectionally symmetric about a hyperplane H. The equations consist of a symmetric time-autonomous part and a nonsymmetric perturbation which decays to zero as time approaches infinity. In our first theorem, we prove the asymptotic symmetry of each bounded positive solution of this asympto...
متن کاملThe maximum principles and symmetry results for viscosity solutions of fully nonlinear equations
This paper is concerned about maximum principles and radial symmetry for viscosity solutions of fully nonlinear partial differential equations. We obtain the radial symmetry and monotonicity properties for nonnegative viscosity solutions of F ( D2u ) + u = 0 in R (0.1) under the asymptotic decay rate u = o(|x|− 2 p−1 ) at infinity, where p > 1 (Theorem 1, Corollary 1). As a consequence of our s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006